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This paper shows how to formulate the transient analysis of 2-dimensional Hagen-Poiseuille
flow using smoothed particle hydrodynamics (SPH). Treatments of viscosity, particle approxi­
mation and boundary conditions are explained. Numerical tests are calculated to examine effects
caused by the number of particles, the number of particles per smoothing length, artificial
viscosity and time increments for 2-dimensional Hagen-Poiseuille flow. Artificial viscosity for
reducing the numerical instability directly affects the velocity of the flow, though effects of the
other parameters do not produce as much effect as artificial viscosity. Numerical solutions using
SPH show close agreement with the exact ones for the model flow, but SPH parameter must be
chosen carefully. Numerical solutions indicate that SPH is also an effective method for the
analysis of 2-dimensional Hagen-Poiseuille flow.
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1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a
pure Lagrangian hydrocode and gridless method,
which uses particles instead of grids or elements.
This method has been suggested as an alternative
to conventional grid-based hydrocodes which
have some drawbacks such as the grid tangling in
large deformation by Lagrangian technique and
the increase of computational cost caused in void
formulation by Eulerian technique. To overcome
the drawbacks of conventional grid-based
hydrocodes, SPH was introduced by Lucy (1977)
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for an application in astrophysics and has been
developed by researchers in various fields (Min et
al., 1996; Petschek and Liversky, 1993; Bonet and
Kulasegram, 2000; Randles and Liversky, 1996).
In addition, SPH has been applied successfully to
a wide range of problems. The basic concept and
formulation were reviewed by Monaghan and
Gingold (1983). An application of SPH to an
analysis of low Reynolds number flows was
performed by Takeda et al. (1994) and Morris et
al (1997). Takeda et al. have solved the
compressible gases with Reynolds number down
to five using SPH. They analyzed the flow in a
duct using 3-dimensional particle allocation and
compared their results with FDM solutions.
Morris et al. have analyzed low Reynolds number
(Re~ 1) incompressible flow between infinite
plates. Their results were favorable with exact
solutions, but they did not model the flow in a
duct using SPH. Morris (2000) simulated two-
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phase flows including surface tension using SPH.
He suggested several possible implementations of
surface tension force. Likewise, many
applications to the fields of environmental,
mechanical, and petroleum engineering involve
the slow viscous flow through the filters,
substrates, and porous materials. The advantages
of SPH are that no hard calculations for genera­
tion or rezoning of grids are necessary and no
special treatments are necessary for multi-com­
ponent fluid (Monaghan and Kocharyan, 1994).

In this paper, the basic equations of SPH are
briefly reviewed and the transformed
formulations of the equations in cylindrical
coordinates are presented. Also, how to formulate
the transient analysis of Hagen-Poiseuille flow in
2-D cylindrical flow with low Reynolds number
is shown using smoothed particle Hydrodynamics
(SPH). SPH solution of Hagen-Poiseuille flow
has been compared with the exact solution.
Additionally, the analyses of effects caused by the
number of particles, the number of particles per
smoothing length (NPH), artificial viscosity and
time increments for the flow are performed.

2•. SPH Formulation in Cylindrical
Coordinates

Formulations of SPH in cylindrical
coordinates for functions and differential
equations were given by Min et al. (2000), and
the governing equations for the analysis ofHagen­
Poiseuille flow are the continuity equation and
the momentum conservation equation (Navier
Stokes equation). The general representations of
those governing equations are reviewed and the
transformed formulations in cylindrical
coordinates are presented.

2.1' SPH form of the governing equations
The foundation of SPH method is an

interpolation theory. The governing equations, in
the form of partial differential equations, are
transformed into the integral through the use of
an interpolation function that gives the kernel
estimate of field variables at a point. Co~­

putationally, the integrals are evaluated as sums

over neighboring points. The basic form of SPH
approximation is given as follows (Liversky et
al. , 1993)

!(x);=± mj!(Xj) W(Xi-Xj, h) (1)
j=l pj

where W(x-x', h) means kernel function. The
function at particle i is determined from the
interpolation of function at neighboring particle j
by the kernel function where, m denotes mass and
p denotes density. There are several types of
kernel function such as Gaussian function,
exponential function, and Cubic B'-spline, etc
(Liversky et aI., 1993). In this paper, the
Gaussian function is adopted as the kernel func­
tion in cylindrical coordinates.

The governing equations of Hagen-Poiseuille
flow in 2-D consist of the continuity equation
and the momentum conservation equation.
Applying the SPH approximation to ~he

governing equations, the following equations in
Cartesian coordinates are obtained

where U, t, II, X, E, and (J are velocity, time,
dynamic viscosity, position vector, strain rate
tensor and total stress, respectively. Subscripts i
and j denote the indices of particles, while
superscripts a and /3 are tensor notations which
represent direction in space. Wo,a(.) means the
derivative of kernel function Wi;of particle i with
respect to coordinate x a

. These SPH forms show
that the variables at particle i are influenced by
the variables at particle j.

For the most cylindrical problems, axisy­
mmetry is taken into account and the equations in
Cartesian coordinates are transformed into those
in cylindrical coordinates. The stress components
in the governing equations in Cartesian
coordinates x, y, and z must be transformed into
those in cylindrical coordinates s-, e, and z. For
transforming into the cylindrical coordinates, the
contravariant tensor transformation is employed
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as follows

where a~ means the direction cosine. The
momentum conservation in two cylindrical

coordinates s- and z can be yielded by applying
the tensor transformation for stresses in Eq. (5)

and the symmetry of cylindrical coordinates to the

momentum conservation equation in Cartesian

coordinates. The momentum equations in

cylindrical coordinates can be expressed as

( atr ) _ 2 ~ W; {(Jy ( 10+12 II)----cit i -JT7' m, e Pf r~-r, 1
0

(Jj8 10-12 (Jy II
+--::rri--+--::r(Zi-Zj)- (6)

pj 210 pj 10

+ ~~ (ri-rj}:)+ ~7 (Zi-Zj)}

( dU
Z

) 2 { (J'."Z (I )
(it i=JT~mjWe ~1 r. I: -rj

+~ (Zi-Zj) +1f( rir:rs }: )+f(Zi-ZJ} (7)

where In is the modified Bessel's function of nth

order and We is a 2-dimensional cylindrical ker­

nel function given as

We ( '; ) =_1_ (21< Ge-eeecos8d8=Ge-fIo(';) (8)
2;r )0

where ~ and G are given by the smoothing length
h and the position of two particles r, and rj as

(13)

(14)
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and J1.ii III Cartesian coordinates can be
transformed into that in cylindrical coordinates as

where Cii and iSii are the average impact wave
velocity and the average density at particles i and

j, respectively. The parameter a is equivalent to a

combined Navier-Stokes shear and bulk viscosity

and can be replaced by a proper Navier-Stokes

viscosity, while the parameter 13 is similar to a
Von Neumann-Richtmyer viscosity and is needed

to prevent penetration in high Mach shocks. The

simulation without artificial viscosity makes

results of flow diverged. The parameter J1.ii is

expressed in terms of the displacement difference
and velocity difference of two particles as

where rii=ri-rj, Zii=Zi-Zj and Uii=Ui-Uj.

The artificial viscosity II ii is applied to the
stress terms in momentum equations of Hagen­
Poiseuille flow in cylindrical coordinates.

Gingold (1983) suggested an artificial viscosity

IT ii when two particles £ and j approach each

other as
(5)

(9)

(10)

The transformation of the other governing

equation is performed as above. The continuity

equation of Hagen-Poiseuille flow in cylindrical

coordinates is transformed into as follows

2.2 Artificial viscosity

In the analysis of this model, numerical
oscillation occurs at the wall, which brings about

the divergence of solution. An artificial viscosity

is introduced in the momentum equation in order

to reduce numerical oscillation. Monaghan and

2.3 Boundary conditions of the model flow
To a realistic model flow at lower Reynolds

numbers, no-slip boundary conditions are needed

on the wall. We used "imaginary particle" of

Libersky at al. (1993) for no-slip boundary

conditions. Imaginary particles do not calculate
their physical values from the neighboring

particles, but they do affect calculation of

neighboring real particles on the wall.

Use of imaginary particles in the simulation for
boundary conditions is shown in Fig. I. Imagi­

nary particles can be created by reflecting real

particles across the boundary with the same mag­

nitude and opposite direction velocities to those

of particles within 3h from the boundary. Veloci-
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Table 1 Analysis conditions for Hagen- Poiseuille
flow

Radius(R)

Density(p)

Dynamic viscosity (II)

Acceleration(AZ)

! r

Fig. 2 Allocation of particles in a circular duct

Fig. 1 Construction of imaginary particles for no­
slip boundary condition

ties in the boundary thus become zero in the case
of particles approximation.

3. Simulation of Hagen-Poiseuille
Flow and Error Estimate

z

where, fo is Bessel function of the first kind of
order 0, am are sequential series solutions satisfy­
ing f (am) =0, R is radius of circular duct and 11

is dynamic viscosity. In Eq. (17), the first term in
the right-hand side represents a steady state flow
profile while the second term indicates transient
velocity profile. The analysis conditions for the
model are listed in Table I.

3.2 Numerical analysis
For SPH analysis, the particles in 2­

dimensional are allocated as shown in Fig. 2. The
problem domain is filled with particles in rectan­
gular allocation. Particles on the outside of a
circular duct are imaginary particles to meet a no­
slip boundary condition. The allocation of
particles is axisymmetry. In Fig. 2, Rand W mean
the radius of circular duct and the width in the z­
direction, respectively.

Effects by the number of particles, the number
of particles per smoothing length (NPH), artifi­
cial viscosity and time increments for the flow
have been analyzed. Basic analysis conditions for
simulations of the model flow are listed in Table

The viscous flow in a duct is a practical
engineering problem. To exemplify the SPH
formulation, transient Newtonian fluid with the
constant viscous coefficient through a circular
duct has been simulated. If we take a flow in an
axis direction, only z-direction flow exists
because ofaxisymmetry of the flow.

3.1 Exact solution
Hagen-Poiseuille flow is rest at initial and is

driven by an applied acceleration term due to the
pressure gradient parallel to the z-axis for t ~O.
No-slip boundary condition is needed on the
circular duct wall. When Hagen-Poiseuille flow
conditions are applied to momentum equation in
the cylindrical coordinate, Eq. (3) becomes as
follows

where, A Z is an acceleration term due to the
pressure gradient to the z-direction. Using Bessel
function and Fourier series, above partial
differential equation can be solved. The exact
solution is written as follows

UZ(r, t)=:: R2( 1-~)+iJl ame-AmtJo( ~r) (17)

am 2 r { AZ 2( r2
)

Rzl'f(am) )0 - r 411 R I-j?!"

fo( ~ r)}dr m=l, 2, 3, ... (18)
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Table 2 Analysis conditions for Hagen-Poiseuille
flow by SPH

RxW
(number of particles)

NPH (number of particles per
smoothing length)

Artificial viscosity coefficients
(a, (3)

Time increment (at)

4Ox8

0.5,0.0

lOO/lSec

25 r--------------.....,

20 .... ----.

- •• exact
~partice number 20*4

--o--partice number 30*6

---H--partice number 40*8

-+--partiee number 50*10

480400160 240 320
nrnelrns)

80

Maximum velocities in Hagen-Poiseuille
flow in terms of the number of particles in
SPH

ol..-_~ ~ ~_._J

o

Fig. 3

2. The maximum velocity of the numerical solu­

tion (SPH) is compared with the exact one and
the error by the error equation in Eq. (19) is
estimated.

where. Ui.ax is maximum velocity in z-directio

nand tn is sequential times from 40ms to 400 ms.
The increment of flow velocity is radically

reduced to 95% of fully developed velocity in 400
ms,

3.2.1 Effect of the number of particle
More accurate solutions may be expected by

increasing the number of particles. The com­

putation time would increase if the number of

particles was to be increased. Furthermore. the
increment of the number of particles requires in

decrement of the time increment for numerical

stability. The decrease of the time increment
makes a radical increase of the computation time.

For efficient solutions. the optimized number of

particles should be selected without causing the
large error.

To find the optimum number of particles. nu­

merical tests are performed for the model flow by
using various numbers of particles R (length of

radius) XW (width in the z-directions) such as

20 X4. 30 X6, 40 X8, and 50 X 10. Other
parameters are used as the values listed in Table

2. The results in Fig. 3 show that the increase of

number of particles somewhat made flow velocity

increased. However, the effect of the number of
particles slightly affects the solution directly.

25 ,---------------.

480400

_NPH-1

--A--NPH=2
...•..•• _NPH=3 •.•

_NPH=4

______________ -. - exact _

80
o'----'----''----'----'---'---J

o

U>

~ 15
};
'0
o
Q;
> 10
~
E

5 .••

160 240 320

time(ms)

Fig.4 Maximum velocities in Hagen-Poiseuille
flow in terms of NPH

3.2.2 Effect of NPH
NPH (number of particles per smoothing

length) represents the number of particles within

the smoothing length in arbitrary directions;
When the initial distance between particles is

fixed, NPH determines the smoothing length of

kernel by multiplying each particle distance.
Increase in NPH provides with providing a wider

region to approximate particles. which makes

numerical instability reduced. In that case. the
difference of physical values among the particles

could be reduced. and numerical results are more

or less equalized. As NPH increases, the number
of neighboring particles which should be

calculated per particle tends to be increased. The

increase of the number of neighboring particles

20 .- •...• ----.

(19)(Ui.ax) SPH,tn - ( Ui.ax) Exaet,tn

(Ui.ax) Exact, tn
Error-;
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Fig. 5 Maximum velocities in Hagen-Poiseuille
flow in terms of the time increment

Fig. 6 Effect of parameter a in artificial viscosity in
Hagen-Poiseuille flow

causes the increase of simulation time. The nu­
merical tests for the model flow are performed
using parameters in Table 2 and shown in Fig. 4.
NPH is changed for I, 2, 3, and 4 in turn. In the
results of numerical tests, the increase of NPH
makes flow speed more or less reduced, however
effect of NPH is shown not to greatly affect the
solution.

3.2.3 Effect of the time increment
As the SPH formulation calculates physical

values at the arbitrary time based on finite differ­
ence method, the time increment (8t) affects the
error of solution directly. As time increment is
related to numerical stability in numerical inte­
gration, an excessive time increment may result in
numerical . instability. On the other hand, the
small time increment may have an advantage in
numerical stability. The small time increment,
however, prolongs the calculation time with
increasing the number of iterations. An optimized
time increment should be selected. The flow is
simulated using the parameters in Table 2 except
for the time increment and the choice of the time
increment is 0.1, I, 10, 100,usec in turn. In spite of
increasing ten times of the time increment, the
results of calculation are hardly affected as shown
in Fig. 5. But the time increment directly affects
the analysis time. Therefore, the selection of the
time increment is important for the analysis

efficiency.

3.2.4 Effect of artificial viscosity
Even though the artificial viscosity in SPH

prevents numerical instability on boundaries
where physical values change radically, the artifi­
cial force added in the momentum term causes
viscous (damping) force in proportional to the
magnitude of artificial force. In this section, the
effect of artificial viscosity which consists of a and
/3 terms in Eq. (12) is analyzed. Effect and error
of the term in artificial viscosity are shown in Fig.
7. The model flow is simulated by changing a=
1,2,3,4 in turn with fixed /3=0.0. As can be seen
in Fig. 6, the parameter a has an effect on the flow
results.. In case of a=O.O, results could not be
obtained because of the divergence on the
boundary. The increase of a made flow speed
decreased by increasing viscous (damping) force.
A small a greater than 0.0 and much less than 1.

o is recommended to yield a reasonable solution.
Effect of the parameter /3 term -in artificial

viscosity is shown in Fig. 7. Numerical simulation
with a=O.O makes numerical procedure unstable.
Hence, the model flow is simulated by changing
/3= 1,2, 3,4 in turn with fixed a=0.5. From these
experiments in Fig. 7, it is understood that the
parameter /3 has little effect on the solutions. As
mentioned in Sec. 2.2, the parameter /3 in the
artificial viscosity plays a part in preventing
penetration in high Mach shock. Since this
simulation model has a low speed, the parameter
/3 is considered to be little influence on the
solution. The /31-4 term in artificial viscosity is
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302510 15 20
velocity(um/s)

Comparison of SPH and exact solutions for
Hagen-Poiseuille flow

E
E
a:

Fig. 9

The SPH transient solutions using parameters in
Table 2 are very similar to the exact solutions.
When analysis time reaches I sec, the velocity
increment is less than 0.01%. With this reason, it
can be assumed that velocity profiles are almost
fully developed. The results show that the error
increase as time increases is less than 2% when
fully developed.

4. Conclusions

The Hagen-Poiseuille flow in 2-dimensional
has been analyzed by using Smoothed Particle
Hydrodynamics (SPH) . For SPH analysis, the
particles are arranged in 2-dimension to reduce
the computation time and numerical solutions are
compared with the exact solution. Analysis of
effects caused by the number of particles, the
number of particles per smoothing length (NPH),
artificial viscosity and time increments for the
flow are performed. The results of numerical tests
show that the effects of the number of particles,
the number of particles per smoothing length and
time increments are very small. As for artificial
viscosity of Monaghan & Gingold for reducing
numerical instability, the parameter a affects
dominantly on the solutions. From the analysis of
effects of principal parameters, the simulation
results of Hagen-Poiseuille flow by using SPH
are very similar to the exact solution if appropri­
ate parameters were used.

From the above results, it is convinced that
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Effect of parameter j3 in artificial viscosity in
Hagen-Poiseuille flow
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Fig. 8 Oscillation on the boundary in Hagen­
Poiseuille flow

almost zero because t~e estimated fJ.ii is very
small. The term including a plays a part in
reducing numerical instability and operates like a
real viscous'. The magnitude of aCijf..Lii directly
influences on the flow.

Fluctuation on the boundary for various a is
shown in Fig. 8. Because of the divergence on the
boundary, results of a=O.5 and ,8= l.0 are
presented instead of results of a=O.O and ,8=0.0.
This fluctuation is shown to be decreased by the
increment of the parameter of the artificial
viscosity. The reason of such a phenomenon has
not been proved yet. Further improvements for
the implement of the boundary conditions to
reduce this fluctuation need to be taken.

Speed profiles of transient flow are shown in
Fig. 9, where the solid line represents exact
solutions and the dotted profile represents
solutions of SPH simulation with respect to time.
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SPH is also an effective method for axisymmetric
2-dimensional analysis of Hagen-Poiseuille tran­

sient flow.
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